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Abstract

The Busemann function plays a very important role in studying topology and geometry of a complete Riemannian mani-

fold. In this paper, the Busemann functions on the real classical domain of the first type and the Cartan domain of the fourth type in the

explicit formulas are obtained.
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The Busemann function plays a very important
role in studying topology and geometry of a complete
Riemannian manifold!! 3, Zhong“] has obtained the
Busemann function on the Cartan domain of the first
type explicitly. Zhongm also announced that his
method is suitable for the Cartan domains of the sec-
ond and third types. But Zhong’s method is not suit-
able for the Cartan domain of the fourth type. In this
paper, we first obtain the Busemann function on the
real classical domain of the first type, and further-
more, by using a special isometric mapping we obtain
the Busemann function on the Cartan domain of the
fourth type.

1 Preliminaries

In a complete Riemannian manifold, let »(¢) be
a geodesic ray, ¢t be the arc length parameter, then
the Busemann function determined by r(¢) is defined
as below!*). B (x)= tiiglm(d(x, r{(t)) —1t), where

d{(-, ) is the Riemann distance, x belongs to the
complete Riemannian manifold.

Let R™* ™ denote the set of all m X n real matri-
ces. The real classical domain of the first type is the
following domaint!;

Reilm,n):={XER™ ": I- XX >01,

(m=<in).

In Aut (Rg;(m, n))—the holomorphic auto-

morphism group of Rg;(m, n), the mapping: Y =
A(X - Xo) (I - X,X) D" maps X, onto O,
where A, xm, D,x, satisfy A’A = (I — XOX;)_l,
DD=(I-X,X,) .

Let o '(X)=A(X - Xo)(I - X,X) 'D"1,
then
o(X) = (A + XDX,) "(AX, + XD). (1)
Obviously, ¢ € Aut(Rgi{m,n)).

Any X €Rgi(m, n) can be writen into matrix
polar coordinates X = UAV, where U and V are
m X m and n X n real orthogonal matrices respec-
tively,

Ay 00 e 0 0 0

0 2 0 0 - 0
A= : :2 . . . : :

0 0 - 4, 0 - 0 i

A> A=A = =21, =0).
By Ref. [5], ds’=tu[(I-YY" ) dY(I~-Y'Y)!
dY’] is the Riemann metric of Rgi{ m, n) invariant
under Aut (Rg; (m, n)). Thus, for any ¢ €
Aut(Rei(m,n)); X;, X, €ERgi(m, n), we have
d(X;, X2)=d(e(X;y), 9(X3)). The geodesic dis-
tance between O and A is L1
}2

d(o,A)=%{}i

i=1

+2,

1
log T3,
J
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For any fixed Xo & Rg1(m, n), the polar coor-
dinate of X¢ is Xog = UgAV,, where Uy and V are
m X m and n X n real orthogonal matrices respec-
tively and A is an m X n matrix defined above. By
Ref. [5], thereis a o€ Aut(Rgi(m, n)) such that

0t (0, Xy) —> (0, A). Let 591 =

o 3
log1 ) } and

d(O,X())zd(O,A)—_{E
1

1+2a
a::‘l“ 1 =1,2, , m.

, 25010g Y It is easy to

m

check that 2 afZl and 1242 >a,,=0.

1=1
The normal geodesic ray through the points Q
and A is”]

tanha;s 0 0 0 -0
0 tanha,s 0 0 -0
r(s)= . N oo
: : . 0 oo
0 0 * tanha,s 0 = 0J
(2)

Then the normal geodesic ray joining O to Xy is

GDt)(T(S)): to(s), i.e.

mnha;s 0 0 0 = D
0 tanh 0 0 - 0

a(s)=Uq : an:azs " 0 . | Ve
0 0 * tanhg,s 0 -+ 0

Obviously, ¢(0) =0, o(s¢)=UgAVy=X,, d(0,
a(s))=s.

Because the Riemann metric of Rgi( m, n) is in-
variant under Aut (Rg; (m, n)), for any ¢ €
Aut(Rg(m,n)), the normal geodesic ray joining
$(0) o ¢(Xy) is ¢(o(s5)). But for any X, YE
Rri{m, n), there is o1 € Aut(Rg;(m, n)) such
that ¢,: (X, Y) — (0, X,). Consequently, the
normal geodesic ray joining X to Y is

1o (s =@ (@e(r(s)))=19(r(s)).

Therefore, if r:[0, )R (m, n) is a
geodesic ray and 7(0) = X, then r(s)=¢(r(s)),
where ¢ € Aut(Rg(m,n)), ¢(0)=X,. By (1)

t(s)=(A +r(s)DX,) “(AXo+ r(s)D). (3)

2 Some lemmas

The proofs of the following five lemmas are simi-
lar to that in Refs. [4,6].

Lemma 1. Suppose that r(s) is a geodesic ray
as (3), where r(s) is of the form (2), a;>a,>

>a,,>0. We can write 7(s) into polar coordinates

() 0 - 0 0 0
r(s)=U(s) 0 EZSS) 8 0 0 Vi(s),
0 0 cE,(s) 0 -+ 0

(4)
where U(s) and V(s) are m X m and n X n real or-
thogonal matrices respectively, 1> &((s)=8&(s) =
o 226,(s)=0. Let §,(s) =tanhb,(s), i=1,2,-,
m . Then there are constants «;, 1 =1, -, m, which
only depend on X and subsequence 5, —> (; >
o) such that #;(s) =as + a; +to(1), i=1, -, m
on subsequence {s, | .

Lemma 2. In Re;(m, n), two geodesic ray r ~

am(i. e. r is asymptote to o), where

tanha s 0 0 0 -0
0 tanha,s - 0 0 -0
t(s)= . . N
: : 0 Do
0 0 - tanha,s 0 - 0
a?:L 1=2a,=>=a,,=0.
r=1
&(s) 0 0
0 &(s 0
o(s)=U(s)| . ‘Zf‘) R (2
0 0 £, (s) 0 )
1>El(5)252(s)> =8, (5)=20,

where U(s) and V(s) are m X m and n X n real or-
thogonal matrices respectively.

1+ &)
IJG ¢ = ) s AN
to,=d (0 o(s)), b, (s 5(5)
Then ¢(s) can also be denoted that
tanhb(s) o, 0 0 0 - 0
o(s) = U(s) 0 ramhoa(op, 8 v
0 0 -+ tanhb, (s)p, 0 - 0
V(s).

One can check that » b3(s)=1.
i=1

Therefore, there is a subsequence of s such that
bi(s)>=b;, (i=1,2,,m); U(s)—>U; V(s)—~
V, obviously UU =1, VV' =1. Then

by 0
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1,2,,m).

Furthermore, a;=b,(i =

Lemma 3. Suppose g (s) = ¢ (r (s)) be a
geodesic ray and ¢(0) = X, where

tanha s 0 0 0 0
0 tanhays - 0 0O -0
r(s)= . i . C
: : 0 :
0 0 - tanha,,s 0 - 0

>lat=1, 1>a;>>a,>0.

1=1

o€ Aut(Rg(m,n)) and ¢(0) = X,.

tanhbs 0 0 0« 0
0 tanhb,s -+ 0 0 -0
ri(s)= . . . I
: : . 0 Do
0 0 - tanhb,,s 0 -+ 0
D1 bi=1, 1>8,>>b,>0, r1(0)=0.
=1

If 6~7ry, then r=ry.

Lemma 4. Suppose

tanha s 0 0 0 - 0
0 tanha,s - 0 0 0
r(s)= . . . .o
: : . 0 A
0 0 - tanha,s 0 - 0

Za%: 1’ 1>a1>"'>am>0. Fix X()e
=1

Rri{m,n). Then the unique geodesic ray which is

asymptotic to » (s) and starting from X, must have
the form ¢ (7 (s)), where ¢ € Aut(Rp{m, n)) and
e(0)=X,.

Lemma 5. Suppose

tanha s 0 0 0 -~ 0
0 tanhays 0 0 -0
r(s)= i ) . B
: : 0 I
0 0 - tanha,s 0 - 0

m

Dlai=1,1>a,>>a,>0.

=1

I o(r(s))~r(s), where ¢ € Aut{Rp(m, n))
and ¢(0) = X, then 90_1("(5))~r(5), obvious-
ly, ¢ '€ Aut(Rgi(m,n)) and ¢ '(X() = 0.

We can write a(s): = ¢ '(r(s)) into

tanhb,(s) 0 0 0 - 0

0 tanhb 0 0 - 0

s=uo| O kbl L
: : . 0 HEE R

0 0 « tanhb,(s) 0 < 0

*V(s),
where U(s) and V(s) are m X m and n X n real or-
thogonal matrices respectively.

According to Lemma 1, there is a subsequence
5;—> such that 5,(s,) = a;s; + a; T 0(1), 1 =1,2,

ym.

Then a, = — %logdkk(xo) and

dll(XO) x een *
* dZZ(XO) “es x*
* * dmm(XO)

= (I - X)) - XoX)(I - X)),
where XOZ(Xim),XénAM))an-

3 The Busemann function on Rg(m,n)

Theorem 1. In Rg(m, n), for any geodesic ray

through O
tanha s 0 0 0 - 0
0 tanha,s - 0 0 - 0
r(s)= . . . N
: : . 0 I
0 0 - tanha,s 0 - 0

m

>l ai=1, 1=a,==a, >0,

1=1
the Busemann function $3,(X) determined by »(s) is
B,(X) == 5 ailogdu(X),
|

where X =(X{™, X3" ™)« € Rri(m, n),

dll(X) * P *
* dp(X) - *
* * dmm(X)

= (I-X)™" (I - XX)(I-X,)",

Proof. (i) We first treat the case a; >a, > >
a,,>0.

Let {s5,! be a subsequence of {s} such that s,—
+ 00 when £— + o,

Let 8 be the geodesic ray joining X to r (s;)
and 3,(0) = X. Then 3,(0)—>v(k—>).

Thus there is a geodesic ray ¢ such that ¢(0) =
X, 6(0)=1wv, 6 ~r. For 6(s), there is ¢ €
Aut(Rgi(m,n)), ¢(0)=X and

tanhb s 0 0 0 - 0
0 tanhb,s - 0 0 -0

ri(s)= . . . 0 N
0 0 -+ tanhb,s 0 --- 0
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m

>Dibi=1, 125,225,220, r1(0)=0 such

that ¢(s)=¢(r;(s)). According to Lemma 3, one
hasry =7, thus 6 (s) = @ (r(s)). Let z(s) =
¢ Mr(s)). Because d (r (s5), ¢ (r (s))) =
d(e "(r(s)),r(s)), t~r. Write

tanhéb, (s) 0 0 0 - 0
0 h e 0 e
do=u| 0 bl 00
: : . 0 HERE
0 0 -+ tanhb,(s) 0 - 0
< V{s),

By Lemma 5, b,(s)=as+a, +0(1), i=1,2,,

m and a; = — 2 logdy (X), i=1,2,,m.
B.(X)= lim (d(X,7(s)) - )

lim (d (@™ (X), ¢ ' (r(5))) = 5)

slim(d(O,r(S))—S),

s>+ oc

but d(O,r(s)):( Zm: bf(s))

i

il

1
2
’

m 1
d(0,7(s)) —s= ( Eb?(s))z —s
i(ais +a; + 0(1))* - §?
=1 . -
DI HOIEE
252’”:0{0{ + 0(1)

e
(Eb?(s))z + s

=1

m 1
Because ‘(E b?(s))z—s‘ =1d(0, t(s)) -
d(O,r(s)| < d (r (s), v (5)) < const.,
m 1
(be(S))z

N

1 when certain subsequence s; of

§>00,

Thus for certain subsequence of s, d(X, r(s)) —s
=d(0,r(s))—s—> E azay .
k=1

Therefore 8, (X ) = _ljglm(d(x, r(s))—s)=

m 1
Z Ay = —7 E aklogdkk(X).
k=1

k=1

(ii) We turn now to the case a{=="""==a,, =>0.

Choose sequence b?v) (1<<{<<m) such that
b'"—>q,(v—+), and for any vEN, b >5{" >

. >5 >0, Let

tanht.”s 0 - 0 0 0
(.U) e )
(= | 0 00
: : . 0 I
0 0 - tanh6's 0 -+ 0

m

by (i), B, (X) = E b;v)ak. Letting v—>0° gives
v k=1

B (X)= Z awy .

Theorem 2. In Rgi(m, n), for any geodesic ray

through O
tanhays 0 0 0 - 0
0 t h ee 0 0 P O
r(s)="Uo : ar):azs - 0 . s | Ye
0 0 - tanha,s 0 - 0

m

2
> ai=1, 1=2a,=>24q, >0,
=1
where Uy and Vgare m X m and n X n real orthogo-
nal matrices respectively, the Busemann function

B3,(X) determined by r(s) is

B (X) =-— %Eaklogdkk(X),
k=1

where
d1(X) * *
»* dZZ(X) cee X%
* * dmm(x)

= (U - XVo) M1 = XX')(U, — Vo X') 1,
and V; = ( V;l, V;z),,x,,, Vo and Vy; are m X n
and (n — m ) X n matrices respectively.
Proof. Denote r(s) = Ugyro(s) Vy.
B.(X)= lim (d(X,r(s)) ~s)
= 111;1'1 (d(X, Uoro(S)Vo)_S)

= lim (d(U,XV,, ro(s)) = s)

s>+

=8, (UyXVy).

By Theorem 1,

m

E alogd ,, ( U;XV;),

k=1

’ ’, 1
ﬁro( UOXV()) = - ?

where d ;, ( U;XV(/,) satisfy

di(UXVy) % x
Go| ot e
e d (U,XV,)
(I-X;) NI~ U XV, VoX'Ug)(I- X))

* *
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=(I-X1*)71(I—U;XX’UO)(I—XI*/)_I For any z € Rv(n),
= (U= XVy) {I-XX')(Uy~ VX)) 7Y, Yi=£(z) - /
1 (22" —1) (zz'—1) 2

where (X\™%, X\" ™) = U, XV, Vo=(V,,
Vidnxns Vor and Vg are m X n and (n — m) X n

matrices respectively.

du(X):=d ) (U,XV,). Then

du(X) M %
*% dzz(X) *
* * Ay (X))

= (Uy- XV,) (I - XX')(U, - Vo1 X')71,
and 3,(X) = —% E azlogd,, (X).
k=1
4 The Busemann function on Ry(n)

Corollary. In Rz;(2, n), for any geodesic ray
through O

r(s) =

tanha s 0 - 00 - 0)

0 tanha,s =+ 0 0 - 0/’
l=2a;=2a,20,

the Busemann function $,(X) determined by »(s) is

8.(X) == (ailogd 1 (X) + aslogdzn(X)),

2 2 _
ai +a, =1,

11 L1277 Tyg i1 T12

where X =

))Xl:

TI21 X2 "7 Xy, T21 X222

The Cartan domain of the fourth type is the fol-
lowing domain!”’
Rv(n) =1{z=(21,22,,2,)EC":
1+ 2212 -2]2]2>0,1- | 22" | >01.
The invariant metric of Ry{n) is induced from the
invariant metric of Ry (2, n)'®! and denoted by dv.
It can be checked that the real analytic transformation

i Rv(n) —Re1(2, n)
1 (22 - Dz + (22 -1z

P , _ . — is an
22" 12 —1\ = i(z2’ + Dz +i(zz + 1)z
isometric transformation.

X=

Therefore, f maps the geodesic ray in Ry (n)
onto the geodesic ray in Rg((2, n).

Because any zg, z; € Ry (n), there is ¢y €
Aut(Ryy(#)) such that ¢y (=g, =) —> (0, 1),
where A = (14, id5,0, -,0), A;=2A,=0 and 1>
A1+ A,. Therefore we only need to compute the

Busemann function determined by the geodesic ray
joining 0 to A = (A4, 15,0, -,0).

~
<

lzz" 2= 11i(22"+1) —i(22'+1)
We can check that f maps 0 and A = (4;, iA,,0,
+++,0) to O and AR respectively, where

2A
% 0 0 - 0
1+A1—A2
AR: .
2%,
0 — = 0
1_A1+A2

When A; 224,220, 1> 24; + X,, it is easy to
check that

24, 24,
1+a2-A7 1-2+A57

1>

f also maps the geodesic ray w(s) joining O to A in
Riv(n) onto the geodesic ray wgr (S) joining O to
AR il’l ERRI(2, n ) .

By the definition of the Buseman function, we

have Bw(z):ﬁwR(Y)-

Let 50 =dv(0,4)=d(0, Ag),

1+—72/11

_ 1 1+a%-2a2
T 250 B 2h

1+a7- a2

1 (L+2A+ 200+ 2, - 4y)
250 o8 (1 - )‘1 - /12)(]. - /\1 + /12)’

LT
il 1- A7+ 45
@2= 2Sgog 2/12
- 2 2
1 - A7+ A5
-1y A+ 2 +2)Q =2, +2y)
250 g(].—/\l—;lz)(lﬁ'/\l_ﬂz).
Write Z:(zl, X2 ”.’zn)9 21:(21, 22)’
Yl:zf(z)

_ 1 (2 =1) (22’ —1) ](é)
|2z P =11 i(z" +1) —i(ze’ + 1)1 Zy)
Then by Corollary, we can prove the following

theorem

Theorem 3. For Ry (n ), suppose the geodesic
ray joining O to A = (A{, A5, 0, =+, 0) is w (s).
Then the Busemann function determined by w(s) is

Bu(2) = - 3 (arlogd; (=) + azlogd;(x)),

where a;, a;is as above, and
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(1’1(2)

—r_ -1y _ . _ v y-1
N dz(:))_(l Y,) Y"(I-yy)u-yvy,) .
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